An efficient strategy for high-throughput expression screening of recombinant integral membrane proteins.
نویسندگان
چکیده
The recombinant expression of integral membrane proteins is considered a major challenge, and together with the crystallization step, the major hurdle toward routine structure determination of membrane proteins. Basic methodologies for high-throughput (HTP) expression optimization of soluble proteins have recently emerged, providing statistically significant success rates for producing such proteins. Experimental procedures for handling integral membrane proteins are generally more challenging, and there have been no previous comprehensive reports of HTP technology for membrane protein production. Here, we present a generic and integrated parallel HTP strategy for cloning and expression screening of membrane proteins in their detergent solubilized form. Based on this strategy, we provide overall success rates for membrane protein production in Escherichia coli, as well as initial benchmarking statistics of parameters such as expression vectors, strains, and solubilizing detergents. The technologies were applied to 49 E. coli integral membrane proteins with human homologs and revealed that 71% of these proteins could be produced at sufficient levels to allow milligram amounts of protein to be relatively easily purified, which is a significantly higher success rate than anticipated. We attribute the high success rate to the quality and robustness of the methodology used, and to introducing multiple parameters such as different vectors, strains, and detergents. The presented strategy demonstrates the usefulness of HTP technologies for membrane protein production, and the feasibility of large-scale programs for elucidation of structure and function of bacterial integral membrane proteins.
منابع مشابه
An efficient strategy for high throughput screening of recombinant integral membrane protein expression and stability.
Membrane proteins account for about 30% of the genomes sequenced to date and play important roles in a variety of cellular functions. However, determining the three-dimensional structures of membrane proteins continues to pose a major challenge for structural biologists due to difficulties in recombinant expression and purification. We describe here a high throughput pipeline for Escherichia co...
متن کاملEffects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کاملCloning and expression of Brucella outer membrane protein 36kDa (OMP2b) in E. coli
Background & Objective: Brucellosis is an important zoonotic disease of economic significance. Brucella species are gram-negative, facultative intracellular bacteria, and are capable of replicating in the phagosomes of macrophages. They cause infection in several animal species and humans. Prevention of new diseases and diagnosis of cases infected with the organism are both essential for eradic...
متن کاملA high-throughput, restriction-free cloning and screening strategy based on ccdB-gene replacement
BACKGROUND In high-throughput demanding fields, such as biotechnology and structural biology, molecular cloning is an essential tool in obtaining high yields of recombinant protein. Here, we address recently developed restriction-free methods in cloning, and present a more cost-efficient protocol that has been optimized to improve both cloning and clone screening. RESULTS In our case study, t...
متن کاملExpression of Recombinant Coagulation Factor IX in Human Amniotic Membrane-derived Mesenchymal Stem Cells: A New Strategy to Gene Therapy of Hemophilia B
Background: Hemophilia B is an X-linked hereditary disorder of blood coagulation system which is caused by factor IX (FIX) deficiency. Factor IX is a plasma glycoprotein that participates in the coagulation process leading to the generation of fibrin. Replacement of factor IX with plasma-derived or recombinant factor IX is the conventional treatment for hemophilia B to raise the factor IX le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2005